02. Force-Free Motion

Force-Free Lateral-Directional Motion

Defining the State

Let's start by defining the state vector that we'll be tracking when analyzing the lateral-directional motion.

\mathbf{x} = \begin{bmatrix} x_I \\ y_I \\ z_I \\ \phi \\ \theta \\ \psi \\ u \\ v \\ w \\ p \\ r \end{bmatrix}

We can define each of these variables:

Variables Physical meaning
x_I, y_I, z_I x, y, z position in inertial frame
\phi, \theta, \psi Euler angles
u, v, w x, y, z velocity in body frame
p, r Body rates about the x and z axes

Note that the pitch rate q is not included in the state.

Force-free equations of motion

The equations of motion for the force-free case are as follows:

\begin{aligned} \dot{x}_I &= u (\cos \theta \cos \psi) + v (\sin \phi \sin \theta \cos \psi - \cos \phi \sin \psi) + w (\cos \phi \sin \theta \cos \psi + \sin \phi \sin \psi) \\ \dot{y}_I &= u (\cos \theta \sin \psi) + v (\sin \phi \sin \theta \cos \psi + \cos \phi \cos \psi) + w (\cos \phi \sin \theta \sin \psi - \sin \phi \cos \psi) \\ \dot{z}_I &= - u \sin \theta + v \sin \phi \cos \theta + w \cos \phi \cos \theta \\ \dot{\phi} &= p + r \cos \phi \tan \theta \\ \dot{\theta} &= - r \sin \phi \\ \dot{\psi} &= r \cos \phi \sec \theta \\ \dot{u} &= rv \\ \dot{v} &= pw - ru \\ \dot{w} &= -pv \\ \dot{p} &= 0 \\ \dot{r} &= 0 \end{aligned}

Reminder: Fixed Wing Cheat Sheet

You can find all of the equations for this module in the Fixed Wing Cheat Sheet.

Which five of these equations will change when we incorporate forces and moments?

SOLUTION:
  • \dot{u} = rv
  • \dot{v} = pw - ru
  • \dot{w} = -pv
  • \dot{p} = 0
  • \dot{r} = 0